Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Biomed Pharmacother ; 144: 112302, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34678731

RESUMO

Malaria eradication is still a major global health problem in developing countries, which has been of more concern ever since the malaria parasite has developed resistance against frontline antimalarial drugs. Historical evidence proves that the plants possess a major resource for the development of novel anti-malarial drugs. In the present study, the bioactivity guided fractionation of the oleogum-resin of Boswellia serrata Roxb. yielded the optimum activity in the ethyl acetate fraction with an IC50 of 22 ± 3.9 µg/mL and 26.5 ± 4.5 µg/mL against chloroquine sensitive (NF54) and resistant (K1) strains of Plasmodium falciparum respectively. Further, upon fractionation, the ethyl acetate fraction yielded four major compounds, of which 3-Hydroxy-11-keto-ß-boswellic acid (KBA) was found to be the most potent with IC50 values 4.5 ± 0.60 µg/mL and 6.25 ± 1.02 µg/mL against sensitive and resistant strains respectively. KBA was found to inhibit heme detoxification pathways, one of the most common therapeutic targets, which probably lead to an increase in reactive oxygen species (ROS) and nitric oxide (NO) detrimental to P. falciparum. Further, the induced intracellular oxidative stress affected the macromolecules in terms of DNA damage, increased lipid peroxidation, protein carbonylation as well as loss of mitochondrial membrane potential. However, it did not exhibit any cytotoxic effect in VERO cells. Under in vivo conditions, KBA exhibited a significant reduction in parasitemia, retarding the development of anaemia, resulting in an enhancement of the mean survival time in Plasmodium yoelii nigeriensis (chloroquine-resistant) infected mice. Further, KBA did not exhibit any abnormality in serum biochemistry of animals that underwent acute oral toxicity studies at 2000 mg/kg body weight.


Assuntos
Antimaláricos/farmacologia , Boswellia , Heme/metabolismo , Malária/tratamento farmacológico , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Antimaláricos/isolamento & purificação , Antimaláricos/toxicidade , Boswellia/química , Chlorocebus aethiops , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Malária/sangue , Malária/parasitologia , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Plasmodium yoelii/metabolismo , Plasmodium yoelii/patogenicidade , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Resinas Vegetais , Triterpenos/isolamento & purificação , Triterpenos/toxicidade , Células Vero
2.
Parasit Vectors ; 13(1): 446, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32891162

RESUMO

BACKGROUND: Vector control with Bacillus sphaericus (Bs) is an effective way to block the transmission of malaria. However, in practical application of Bs agents, a sublethal dose effect was often caused by insufficient dosing, and it is little known whether the Bs exposure would affect the surviving mosquitoes' vector capacity to malaria. METHODS: A sublethal dose of the Bs 2362 strain was administrated to the early fourth-instar larvae of Anopheles dirus to simulate shortage use of Bs in field circumstance. To determine vector competence, mosquitoes were dissected and the oocysts in the midguts were examined on day 9-11 post-infection with Plasmodium yoelii. Meanwhile, a SYBR quantitative PCR assay was conducted to examine the transcriptional level of the key immune molecules of mosquitoes, and RNA interference was utilized to validate the role of key immune effector molecule TEP1. RESULTS: The sublethal dose of Bs treatment significantly reduced susceptibility of An. dirus to P. yoelii, with the decrease of P. yoelii infection intensity and rate. Although there existed a melanization response of adult An. dirus following challenge with P. yoelii, it was not involved in the decrease of vector competence as no significant difference of melanization rates and densities between the control and Bs groups was found. Further studies showed that Bs treatment significantly increased TEP1 expression in the fourth-instar larvae (L4), pupae (Pu), 48 h post-infection (hpi) and 72 hpi (P < 0.001). Further, gene-silencing of TEP1 resulted in disappearance of the Bs impact on vector competence of An. dirus to P. yoelii. Moreover, the transcriptional level of PGRP-LC and Rel2 were significantly elevated by Bs treatment with decreased expression of the negative regulator Caspar at 48 hpi, which implied that the Imd signaling pathway was upregulated by Bs exposure. CONCLUSIONS: Bs exposure can reduce the vector competence of An. dirus to malaria parasites through upregulating Imd signaling pathway and enhancing the expression of TEP1. The data could not only help us to understand the impact and mechanism of Bs exposure on Anopheles' vector competence to malaria but also provide us with novel clues for wiping out malaria using vector control.


Assuntos
Anopheles , Bacillaceae/imunologia , Plasmodium yoelii , Animais , Anopheles/imunologia , Anopheles/microbiologia , Anopheles/parasitologia , Vetores de Doenças , Proteínas de Drosophila/metabolismo , Imunidade , Controle de Insetos , Proteínas de Insetos/metabolismo , Intestinos/parasitologia , Larva/imunologia , Larva/metabolismo , Larva/microbiologia , Larva/parasitologia , Malária/transmissão , Mosquitos Vetores/imunologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/parasitologia , Oocistos/crescimento & desenvolvimento , Oocistos/imunologia , Oocistos/patogenicidade , Controle Biológico de Vetores , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/patogenicidade
3.
PLoS One ; 15(9): e0238493, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32886698

RESUMO

To better understand anti-malaria protective immune responses, we examined the cellular mechanisms that govern protective immunity in a murine Plasmodium yoelii 17X NL (PyNL) re-infection model. Initially, we confirmed that immune B cells generated during a primary PyNL infection were largely responsible for protection from a second PyNL infection. Using the previously identified memory B cell markers CD80, PD-L2, and CD73, we found an increase in the frequency of CD80-PD-L2-CD73+ B cells up to 55 days after a primary PyNL infection and at 4-6 days following a second PyNL infection. Moreover, injection of enriched immune CD19+CD73+ B cells into nonimmune mice were significantly more protective against a PyNL infection than CD73- B cells. Interestingly, a substantial fraction of these CD73+ B cells also expressed IgM and granzyme B, a biomolecule that has been increasingly associated with protective responses against malaria.


Assuntos
5'-Nucleotidase/metabolismo , Granzimas/metabolismo , Malária/prevenção & controle , 5'-Nucleotidase/imunologia , Animais , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Linfócitos B/imunologia , Feminino , Imunidade , Imunoglobulina M , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium yoelii/imunologia , Plasmodium yoelii/patogenicidade
4.
PLoS Pathog ; 16(5): e1008181, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453765

RESUMO

Plasmodium sporozoites are the infective stage of the malaria parasite. Though this is a bottleneck for the parasite, the quantitative dynamics of transmission, from mosquito inoculation of sporozoites to patent blood-stage infection in the mammalian host, are poorly understood. Here we utilize a rodent model to determine the probability of malaria infection after infectious mosquito bite, and consider the impact of mosquito parasite load, blood-meal acquisition, probe-time, and probe location, on infection probability. We found that infection likelihood correlates with mosquito sporozoite load and, to a lesser degree, the duration of probing, and is not dependent upon the mosquito's ability to find blood. The relationship between sporozoite load and infection probability is non-linear and can be described by a set of models that include a threshold, with mosquitoes harboring over 10,000 salivary gland sporozoites being significantly more likely to initiate a malaria infection. Overall, our data suggest that the small subset of highly infected mosquitoes may contribute disproportionally to malaria transmission in the field and that quantifying mosquito sporozoite loads could aid in predicting the force of infection in different transmission settings.


Assuntos
Malária/transmissão , Esporozoítos/metabolismo , Animais , Anopheles/metabolismo , Anopheles/parasitologia , Comportamento Alimentar , Feminino , Malária/parasitologia , Camundongos , Mosquitos Vetores/metabolismo , Plasmodium/metabolismo , Plasmodium/patogenicidade , Plasmodium yoelii/metabolismo , Plasmodium yoelii/patogenicidade , Glândulas Salivares/parasitologia , Esporozoítos/fisiologia
5.
BMC Infect Dis ; 20(1): 266, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252652

RESUMO

BACKGROUND: Emerging data has suggested that Tregs, Th17, Th1 and Th2 are correlated with early immune mechanisms by controlling Plasmodium infection. Plasmodium infection appeared to impair the antigen presentation and maturation of DCs, leading to attenuation of specific cellular immune response ultimately. Hence, in this study, we aim to evaluate the relevance between DCs and Tregs/Th17 populations in the process and outcomes of infection with Plasmodium yoelii 17XL (P.y17XL). METHODS: DCs detection/analysis dynamically was performed by Tregs depletion or Th17 neutralization in P.y17XL infected BALB/c mice via flow cytometry. Then the levels of cytokines production were detected using enzyme-linked mmunosorbent assay (ELISA). RESULTS: Our results indicated that Tregs depletion or Th17 neutralization in BALB/c mice infected with P.y17XL significantly up-regulated the percentages of mDC and pDC, increased the expressions of major histocompatibility complex (MHC) class II, CD80, CD86 on DCs and the levels of IL-10/IL-12 secreted by DCs, indicating that abnormal amplification of Tregs or Th17 may damage the maturation and function of DCs during the early stage of malaria infection. Interestingly, we also found that the abnormal amplification of Th17, as well as Tregs, could inhibit the maturation of DCs. CONCLUSIONS: Tregs skewing or Th17 amplification during the early stage of malaria infection may inhibit the maturation and function of DCs by modifying the subsets of DCs, expressions of surface molecules on DCs and secretion mode of cytokines.


Assuntos
Células Dendríticas/imunologia , Malária/imunologia , Plasmodium yoelii/patogenicidade , Linfócitos T Reguladores/patologia , Células Th17/parasitologia , Animais , Citocinas/metabolismo , Células Dendríticas/parasitologia , Feminino , Interações Hospedeiro-Parasita , Imunidade Celular , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/parasitologia , Células Th1/imunologia , Células Th17/patologia
6.
Parasitol Int ; 76: 102056, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31953169

RESUMO

Malaria parasites proliferate by repeated invasion of and multiplication within erythrocytes in the vertebrate host. Sexually committed intraerythrocytic parasites undergo sexual stage differentiation to become gametocytes. After ingestion by the mosquito, male and female gametocytes egress from erythrocytes and fertilize within the mosquito midgut. A complex signaling pathway likely responds to environmental events to trigger gametogenesis and regulate fertilization; however, such knowledge remains limited for malaria parasites. Several pseudokinases are highly transcribed at the gametocyte stage and are possible multi-functional regulators controlling critical steps of the life cycle. Here we characterized one pseudokinase, termed PypPK1, in Plasmodium yoelii that is highly expressed in schizonts and male gametocytes. Immunofluorescence assays for parasites expressing Myc-tagged PypPK1 confirmed that PypPK1 protein is expressed in schizonts and sexual stage parasites. Transgenic ΔpPK1 parasites, in which the PypPK1 gene locus was deleted by the CRISPR/Cas9 method, showed significant growth defect and reduced virulence in mice. In the blood stage, ΔpPK1 parasites were able to egress from erythrocytes similar to wild type parasites; however, erythrocyte invasion efficacy was significantly reduced. During sexual stage development, no clear changes were seen in male and female gametocytemias as well as gametocyte egress from erythrocytes; but, the number of exflagellation centers and oocysts were significantly reduced in ΔpPK1 parasites. Taken together, PypPK1 has an important role for both erythrocyte invasion and exflagellation center formation.


Assuntos
Eritrócitos/parasitologia , Plasmodium yoelii/enzimologia , Proteínas de Protozoários/genética , Animais , Feminino , Gametogênese , Estágios do Ciclo de Vida , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium yoelii/patogenicidade , Proteínas de Protozoários/metabolismo , Esquizontes/enzimologia , Esquizontes/patogenicidade
7.
PLoS Pathog ; 15(2): e1007599, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30811498

RESUMO

Plasmodium parasites invade and multiply inside red blood cells (RBC). Through a cycle of maturation, asexual replication, rupture and release of multiple infective merozoites, parasitised RBC (pRBC) can reach very high numbers in vivo, a process that correlates with disease severity in humans and experimental animals. Thus, controlling pRBC numbers can prevent or ameliorate malaria. In endemic regions, circulating parasite-specific antibodies associate with immunity to high parasitemia. Although in vitro assays reveal that protective antibodies could control pRBC via multiple mechanisms, in vivo assessment of antibody function remains challenging. Here, we employed two mouse models of antibody-mediated immunity to malaria, P. yoelii 17XNL and P. chabaudi chabaudi AS infection, to study infection-induced, parasite-specific antibody function in vivo. By tracking a single generation of pRBC, we tested the hypothesis that parasite-specific antibodies accelerate pRBC clearance. Though strongly protective against homologous re-challenge, parasite-specific IgG did not alter the rate of pRBC clearance, even in the presence of ongoing, systemic inflammation. Instead, antibodies prevented parasites progressing from one generation of RBC to the next. In vivo depletion studies using clodronate liposomes or cobra venom factor, suggested that optimal antibody function required splenic macrophages and dendritic cells, but not complement C3/C5-mediated killing. Finally, parasite-specific IgG bound poorly to the surface of pRBC, yet strongly to structures likely exposed by the rupture of mature schizonts. Thus, in our models of humoral immunity to malaria, infection-induced antibodies did not accelerate pRBC clearance, and instead co-operated with splenic phagocytes to block subsequent generations of pRBC.


Assuntos
Malária/imunologia , Malária/metabolismo , Plasmodium/crescimento & desenvolvimento , Animais , Anticorpos Antiprotozoários/metabolismo , Modelos Animais de Doenças , Eritrócitos/microbiologia , Eritrócitos/fisiologia , Humanos , Camundongos , Parasitos , Fagócitos , Plasmodium/metabolismo , Plasmodium/patogenicidade , Plasmodium chabaudi/imunologia , Plasmodium chabaudi/patogenicidade , Plasmodium yoelii/imunologia , Plasmodium yoelii/patogenicidade
8.
Bioconjug Chem ; 29(11): 3606-3613, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30247899

RESUMO

The diagnosis and prognosis of the disease associated with lipid irregularity are areas of extreme significance. In this direction, fluoranthene based yellow fluorescent probes (FLUN-550, FLUN-552, FLUN-547) were designed and synthesized by conjugating the ethanolamine headgroup of the phospholipid phosphatidyl-ethanolamine present in biological membranes. Owing to unique photophysical properties and aqueous compatibility, these probes were successfully employed for staining lipid droplets (LDs) in preadipocytes and Leishmania donovani promastigotes. Furthermore, using the fluorescent probes FLUN-550 and FLUN-552 we successfully imaged and quantitatively detected the excess accumulation of lipids in a liver section of Plasmodium yoelii MDR infected mice (3- to 4-fold) and the tissue sections of third stage human cervical cancer patients (1.5- to 2-fold) compared to normal tissues. To the best of our knowledge, this is the first report of yellow fluorescent probes for imaging and quantitative detection of LDs in human cervical cancer tissues. These new yellow fluorescent lipid probes (FLUN-550 and FLUN-552) showed great potential for diagnosis of cervical cancer patients.


Assuntos
Corantes Fluorescentes/metabolismo , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Fígado/parasitologia , Plasmodium yoelii/patogenicidade , Neoplasias do Colo do Útero/metabolismo , Células 3T3-L1 , Animais , Teoria da Densidade Funcional , Feminino , Humanos , Leishmania donovani/metabolismo , Camundongos , Coloração e Rotulagem
9.
Int J Mol Sci ; 19(5)2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29734652

RESUMO

Curcumin is an antimalarial compound easy to obtain and inexpensive, having shown little toxicity across a diverse population. However, the clinical use of this interesting polyphenol has been hampered by its poor oral absorption, extremely low aqueous solubility and rapid metabolism. In this study, we have used the anionic copolymer Eudragit® S100 to assemble liposomes incorporating curcumin and containing either hyaluronan (Eudragit-hyaluronan liposomes) or the water-soluble dextrin Nutriose® FM06 (Eudragit-nutriosomes). Upon oral administration of the rehydrated freeze-dried nanosystems administered at 25/75 mg curcumin·kg−1·day−1, only Eudragit-nutriosomes improved the in vivo antimalarial activity of curcumin in a dose-dependent manner, by enhancing the survival of all Plasmodium yoelii-infected mice up to 11/11 days, as compared to 6/7 days upon administration of an equal dose of the free compound. On the other hand, animals treated with curcumin incorporated in Eudragit-hyaluronan liposomes did not live longer than the controls, a result consistent with the lower stability of this formulation after reconstitution. Polymer-lipid nanovesicles hold promise for their development into systems for the oral delivery of curcumin-based antimalarial therapies.


Assuntos
Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos , Lipossomos/administração & dosagem , Malária/tratamento farmacológico , Administração Oral , Animais , Antimaláricos/administração & dosagem , Antimaláricos/química , Curcumina/química , Humanos , Lipossomos/química , Malária/parasitologia , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/patogenicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-29784841

RESUMO

As a partner antimalarial for artemisinin drug-based combination therapy (ACT), piperaquine (PQ) can be metabolized into two major metabolites, including piperaquine N-oxide (M1) and piperaquine N,N-dioxide (M2). To better understand the antimalarial potency of PQ, the antimalarial activity of the PQ metabolites (M1 and M2) was studied in vitro (in Plasmodium falciparum strains Pf3D7 and PfDd2) and in vivo (in the murine species Plasmodium yoelii) in this study. The recrudescence and survival time of infected mice were also recorded after drug treatment. The pharmacokinetic profiles of PQ and its two metabolites (M1 and M2) were investigated in healthy subjects after oral doses of two widely used ACT regimens, i.e., dihydroartemisinin plus piperaquine phosphate (Duo-Cotecxin) and artemisinin plus piperaquine (Artequick). Remarkable antiplasmodial activity was found for PQ (50% growth-inhibitory concentration [IC50], 4.5 nM against Pf3D7 and 6.9 nM against PfDd2; 90% effective dose [ED90], 1.3 mg/kg of body weight), M1 (IC50, 25.5 nM against Pf3D7 and 38.7 nM against PfDd2; ED90, 1.3 mg/kg), and M2 (IC50, 31.2 nM against Pf3D7 and 33.8 nM against PfDd2; ED90, 2.9 mg/kg). Compared with PQ, M1 showed comparable efficacy in terms of recrudescence and survival time and M2 had relatively weaker antimalarial potency. PQ and its two metabolites displayed a long elimination half-life (∼11 days for PQ, ∼9 days for M1, and ∼4 days for M2), and they accumulated after repeated administrations. The contribution of the two PQ metabolites to the efficacy of piperaquine as a partner drug of ACT for the treatment of malaria should be considered for PQ dose optimization.


Assuntos
Antimaláricos/farmacocinética , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Quinolinas/farmacocinética , Animais , Antimaláricos/sangue , Antimaláricos/farmacologia , Artemisininas/farmacologia , Biotransformação , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Quimioterapia Combinada , Meia-Vida , Voluntários Saudáveis , Humanos , Malária/metabolismo , Malária/mortalidade , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Óxidos/sangue , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/patogenicidade , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/patogenicidade , Quinolinas/sangue , Quinolinas/farmacologia , Ratos Wistar , Recidiva , Análise de Sobrevida , Adulto Jovem
11.
Shock ; 50(6): 741-749, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29394238

RESUMO

Impairment of host immune response in malaria favors bacteremia caused by typhoidal or nontyphoidal serovars of Salmonella enterica. Ofloxacin and Artesunate are the drugs that are clinically proven for treating typhoid and malaria, respectively. The study evaluates the host responses upon treatment with antibiotic (Ofloxacin) and antimalarial (Artesunate) in a standardized mice model harboring coinfection. BALB/c mice (18-22 g) were simultaneously coinfected with Plasmodium yoelii nigeriensis (Pyn) and S. enterica serovar Typhimurium (STm) and then treated with Ofloxacin or/and Artesunate from day 4 to day 7. The bacterial burden, liver function enzymes, oxidative stress, m-RNA expression of Toll-like receptors (TLR-2 and TLR-4), Th1/Th2 cytokines, hemeoxygenase-1, and NFкB were assessed. Ofloxacin treatment failed to counter the bacterial proliferation in Pyn-STm coinfected mice. However, upon controlling parasitemia with antimalarial, the efficacy of Ofloxacin could be regained. Elevated bacterial burden with malaria induces the expression of TLR-2 and TLR-4 triggering intense inflammatory response (NFκB, Th1/Th2 cytokines) in coinfected mice. This results in critical liver damage (ALT, AST, and ALP), oxidative stress (lipid peroxidation, total GSH, catalase, and super oxide dismutase), and hemeoxygenase-1 (HO-1). The study concludes that malaria infection aggravates the secondary infection of Salmonella serovars and the control of septicemia is critical in recovery of the coinfected subject.


Assuntos
Coinfecção/imunologia , Hepatopatias/imunologia , Hepatopatias/patologia , Plasmodium yoelii/imunologia , Plasmodium yoelii/patogenicidade , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Animais , Antibacterianos/uso terapêutico , Antimaláricos/uso terapêutico , Coinfecção/parasitologia , Citocinas/metabolismo , Modelos Animais de Doenças , Hepatopatias/parasitologia , Malária/tratamento farmacológico , Malária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ofloxacino/uso terapêutico , Estresse Oxidativo/fisiologia
12.
Cell Microbiol ; 20(5): e12821, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29316140

RESUMO

Anopheles mosquitoes transmit Plasmodium parasites of mammals, including the species that cause malaria in humans. Malaria pathology is caused by rapid multiplication of parasites in asexual intraerythrocytic cycles. Sexual stage parasites are also produced during the intraerythrocytic cycle and are ingested by the mosquito, initiating gametogenesis and subsequent sporogonic stage development. Here, we present a Plasmodium protein, termed microgamete surface protein (MiGS), which has an important role in male gametocyte osmiophilic body (MOB) formation and microgamete function. MiGS is expressed exclusively in male gametocytes and microgametes, in which MiGS localises to the MOB and microgamete surface. Targeted gene disruption of MiGS in a rodent malaria parasite Plasmodium yoelii 17XNL generated knockout parasites (ΔPyMiGS) that proliferate normally in erythrocytes and form male and female gametocytes. The number of MOB in male gametocyte cytoplasm is markedly reduced and the exflagellation of microgametes is impaired in ΔPyMiGS. In addition, anti-PyMiGS antibody severely blocked the parasite development in the Anopheles stephensi mosquito. MiGS might thus be a potential novel transmission-blocking vaccine target candidate.


Assuntos
Gametogênese/genética , Células Germinativas/crescimento & desenvolvimento , Malária/genética , Plasmodium yoelii/genética , Animais , Eritrócitos/parasitologia , Feminino , Células Germinativas/metabolismo , Humanos , Malária/parasitologia , Masculino , Proteínas de Membrana/genética , Plasmodium yoelii/patogenicidade , Roedores/parasitologia
13.
Front Immunol ; 9: 2942, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619302

RESUMO

Adaptive immune responses are critical for protection against infection with Plasmodium parasites. The metabolic state dramatically changes in T cells during activation and the memory phase. Recent findings suggest that metformin, a medication for treating type-II diabetes, enhances T-cell immune responses by modulating lymphocyte metabolism. In this study, we investigated whether metformin could enhance anti-malaria immunity. Mice were infected with Plasmodium yoelii and administered metformin. Levels of parasitemia were reduced in treated mice compared with those in untreated mice, starting at ~2 weeks post-infection. The number of γδ T cells dramatically increased in the spleens of treated mice compared with that in untreated mice during the later phase of infection, while that of αß T cells did not. The proportions of Vγ1+ and Vγ2+ γδ T cells increased, suggesting that activated cells were selectively expanded. However, these γδ T cells expressed inhibitory receptors and had severe defects in cytokine production, suggesting that they were in a state of exhaustion. Metformin was unable to rescue the cells from exhaustion at this stage. Depletion of γδ T cells with antibody treatment did not affect the reduction of parasitemia in metformin-treated mice, suggesting that the effect of metformin on the reduction of parasitemia was independent of γδ T cells.


Assuntos
Malária/tratamento farmacológico , Metformina/farmacologia , Parasitemia/tratamento farmacológico , Plasmodium yoelii/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Malária/imunologia , Malária/parasitologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/imunologia , Parasitemia/parasitologia , Plasmodium yoelii/patogenicidade , Receptores de Antígenos de Linfócitos T gama-delta/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento
14.
Nat Commun ; 8(1): 223, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28790316

RESUMO

Infection of mice with strains of Plasmodium yoelii parasites can result in different pathology, but molecular mechanisms to explain this variation are unclear. Here we show that a P. yoelii gene encoding a HECT-like E3 ubiquitin ligase (Pyheul) influences parasitemia and host mortality. We genetically cross two lethal parasites with distinct disease phenotypes, and identify 43 genetically diverse progeny by typing with microsatellites and 9230 single-nucleotide polymorphisms. A genome-wide quantitative trait loci scan links parasite growth and host mortality to two major loci on chromosomes 1 and 7 with LOD (logarithm of the odds) scores = 6.1 and 8.1, respectively. Allelic exchange of partial sequences of Pyheul in the chromosome 7 locus and modification of the gene expression alter parasite growth and host mortality. This study identifies a gene that may have a function in parasite growth, virulence, and host-parasite interaction, and therefore could be a target for drug or vaccine development.Many strains of Plasmodium differ in virulence, but factors that control these distinctions are not known. Here the authors comparatively map virulence loci using the offspring from a P. yoelii YM and N67 genetic cross, and identify a putative HECT E3 ubiquitin ligase that may explain the variance.


Assuntos
Interações Hospedeiro-Parasita/genética , Malária/parasitologia , Plasmodium yoelii/genética , Ubiquitina-Proteína Ligases/genética , Animais , Cruzamentos Genéticos , Feminino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Parasitemia/genética , Parasitemia/parasitologia , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/patogenicidade , Virulência/genética
15.
PLoS Pathog ; 13(7): e1006447, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704525

RESUMO

Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites.


Assuntos
Antígenos de Protozoários/genética , Malária/imunologia , Malária/parasitologia , Proteína 1 de Superfície de Merozoito/genética , Plasmodium yoelii/genética , Plasmodium yoelii/patogenicidade , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Imunidade , Malária/genética , Proteína 1 de Superfície de Merozoito/metabolismo , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Virulência
16.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630062

RESUMO

Repeated stimulation of T cells that occurs in the context of chronic infection results in progressively reduced responsiveness of T cells to pathogen-derived antigens. This phenotype, known as T cell exhaustion, occurs during chronic infections caused by a variety of pathogens, from persistent viruses to parasites. Unlike the memory cells that typically form after successful pathogen clearance following an acute infection, exhausted T cells secrete lower levels of effector cytokines, proliferate less in response to cognate antigen, and upregulate cell surface inhibitory molecules such as PD-1 and LAG-3. The molecular events that lead to the induction of this phenotype have, however, not been fully characterized. In T cells, members of the NFAT family of transcription factors not only are responsible for the expression of many activation-induced genes but also are crucial for the induction of transcriptional programs that inhibit T cell activation and maintain tolerance. Here we show that NFAT1-deficient CD4+ T cells maintain higher proliferative capacity and expression of effector cytokines following Plasmodium yoelii infection and are therefore more resistant to P. yoelii-induced exhaustion than their wild-type counterparts. Consequently, gene expression microarray analysis of CD4+ T cells following P. yoelii-induced exhaustion shows upregulation of effector T cell-associated genes in the absence of NFAT1 compared with wild-type exhausted T cells. Furthermore, adoptive transfer of NFAT1-deficient CD4+ T cells into mice infected with P. yoelii results in increased production of antibodies to cognate antigen. Our results support the idea that NFAT1 is necessary to fully suppress effector responses during Plasmodium-induced CD4+ T cell exhaustion.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interações Hospedeiro-Patógeno , Tolerância Imunológica , Malária/patologia , Fatores de Transcrição NFATC/metabolismo , Plasmodium yoelii/patogenicidade , Animais , Proliferação de Células , Citocinas/metabolismo , Ativação Linfocitária , Malária/imunologia , Camundongos Endogâmicos C57BL
17.
Sci Rep ; 6: 31055, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27503796

RESUMO

Plasmodium associated virulence in the host is linked to extensive remodelling of the host erythrocyte by parasite proteins that form the "remodellome". However, without a common motif or structure available to identify these proteins, little is known about the proteins that are destined to reside in the parasite periphery, the host-cell cytoplasm and/or the erythrocyte membrane. Here, the subcellular fractionation of erythrocytic P. yoelii at trophozoite and schizont stage along with label-free quantitative LC-MS/MS analysis of the whole proteome, revealed a proteome of 1335 proteins. Differential analysis of the relative abundance of these proteins across the subcellular compartments allowed us to map their locations, independently of their predicted features. These results, along with literature data and in vivo validation of 61 proteins enabled the identification of a remodellome of 184 proteins. This approach identified a significant number of conserved remodelling proteins across plasmodium that likely represent key conserved functions in the parasite and provides new insights into parasite evolution and biology.


Assuntos
Plasmodium yoelii/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Animais Geneticamente Modificados , Evolução Biológica , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita , Malária/sangue , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium/genética , Plasmodium/metabolismo , Plasmodium yoelii/genética , Plasmodium yoelii/patogenicidade , Proteoma/metabolismo , Proteômica , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Esquizontes/metabolismo , Frações Subcelulares/metabolismo , Frações Subcelulares/parasitologia , Trofozoítos/metabolismo
18.
Cytometry A ; 89(6): 531-42, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27078044

RESUMO

In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease-associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label-free detection of malaria parasite-produced hemozoin in infected red blood cells (iRBCs) as high-contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001-0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼10(3) times better than the existing tests. Multicolor time-of-flight PAFC with high-pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real-time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble-based multicolor PAFC showed capability to real-time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high-sensitivity, high-resolution ultrafast PAFC-FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite-cell interactions directly in bloodstream, whereas portable hand-worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry.


Assuntos
Eritrócitos/parasitologia , Citometria de Fluxo/métodos , Hemeproteínas/análise , Malária/diagnóstico , Parasitemia/diagnóstico , Técnicas Fotoacústicas/instrumentação , Plasmodium yoelii/crescimento & desenvolvimento , Animais , Computadores de Mão , Orelha/irrigação sanguínea , Orelha/parasitologia , Diagnóstico Precoce , Citometria de Fluxo/instrumentação , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemeproteínas/biossíntese , Hemeproteínas/química , Interações Hospedeiro-Parasita , Lasers , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/parasitologia , Técnicas Fotoacústicas/métodos , Plasmodium yoelii/patogenicidade , Esquizontes/química , Esquizontes/fisiologia
19.
Mol Biochem Parasitol ; 204(1): 26-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26684675

RESUMO

Malaria symptoms and pathogenesis are caused by blood stage parasite burdens of Plasmodium spp., for which invasion of red blood cells (RBCs) by merozoites is essential. Successful targeting by either drugs or vaccines directed against the whole merozoite or its antigens during its transient extracellular status would contribute to malaria control by impeding RBC invasion. To understand merozoite invasion biology and mechanisms, it is desired to obtain merozoites that retain their invasion activity in vitro. Accordingly, methods have been developed to isolate invasive Plasmodium knowlesi and Plasmodium falciparum merozoites. Rodent malaria parasite models offer ease in laboratory maintenance and experimental genetic modifications; however, no methods have been reported regarding isolation of high numbers of invasive rodent malaria merozoites. In this study, Plasmodium yoelii-infected RBCs were obtained from infected mice, and mature schizont-infected RBCs enriched via Histodenz™ density gradients. Merozoites retaining invasion activity were then isolated by passing the preparations through a filter membrane. RBC-invaded parasites developed to mature stages in vitro in a synchronous manner. Isolated merozoites were evaluated for retention of invasion activity following storage at different temperatures prior to incubation with uninfected mouse RBCs. Isolated merozoites retained their invasion activity 4h after isolation at 10 or 15 °C, whereas their invasion activity reduced to 0-10% within 30 min when incubated on ice or at 37 °C prior to RBC invasion assay. Images of merozoites at successive steps during RBC invasion were captured by light and transmission electron microscopy. Synthetic peptides derived from the amino acid sequence of the P. yoelii invasion protein RON2 efficiently inhibited RBC invasion. The developed method to isolate and keep invasive P. yoelii merozoites for up to 4h is a powerful tool to study the RBC invasion biology of this parasite. This method provides an important platform to evaluate the mode of action of drugs and vaccine candidates targeting the RBC invasion steps using rodent malaria model.


Assuntos
Antimaláricos/farmacologia , Malária/parasitologia , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/isolamento & purificação , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Eritrócitos/parasitologia , Feminino , Merozoítos/efeitos dos fármacos , Merozoítos/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/farmacologia , Plasmodium yoelii/patogenicidade , Proteínas de Protozoários/química , Proteínas de Protozoários/farmacologia , Esporos
20.
PLoS One ; 10(10): e0141141, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505634

RESUMO

Malaria remains a major global public health problem with an estimated 200 million cases detected in 2012. Although the most advanced candidate malaria vaccine (RTS,S) has shown promise in clinical trials, its modest efficacy and durability have created uncertainty about the impact of RTS,S immunization (when used alone) on global malaria transmission. Here we describe the development and characterization of a novel modified vaccinia virus Ankara (MVA)-based malaria vaccine which co-expresses the Plasmodium yoelii circumsporozoite protein (CSP) and IL-15. Vaccination/challenge studies showed that C57BL/6 mice immunized with the MVA-CSP/IL15 vaccine were protected significantly better against a P. yoelii 17XNL sporozoite challenge than either mice immunized with an MVA vaccine expressing only CSP or naïve controls. Importantly, the levels of total anti-CSP IgG were elevated about 100-fold for the MVA-CSP/IL15 immunized group compared to mice immunized with the MVA-CSP construct that does not express IL-15. Among the IgG subtypes, the IL-15 expressing MVA-CSP vaccine induced levels of IgG1 (8 fold) and IgG2b (80 fold) higher than the MVA-CSP construct. The significantly enhanced humoral responses and protection detected after immunization with the MVA-CSP/IL15 vaccine suggest that this IL-15 expressing MVA construct could be considered in the development of future malaria immunization strategies.


Assuntos
Imunidade Inata/genética , Interleucina-15/biossíntese , Vacinas Antimaláricas/imunologia , Malária/imunologia , Animais , Feminino , Humanos , Interleucina-15/genética , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Camundongos , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/imunologia , Plasmodium yoelii/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinação , Vírus Vaccinia/genética , Vírus Vaccinia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...